A new medical decision making system: Least square support vector machine (LSSVM) with Fuzzy Weighting Pre-processing
نویسندگان
چکیده
The use of machine learning tools in medical diagnosis is increasing gradually. This is mainly because the effectiveness of classification and recognition systems has improved in a great deal to help medical experts in diagnosing diseases. This study aims at diagnosing Liver Disorder with a new hybrid machine learning method. By hybridizing LSSVM with Fuzzy Weighting Pre-processing, a method was obtained to solve this diagnosis problem via classifying Liver Disorder. Fuzzy Weighting Pre-processing stage was developed firstly in our study. This Liver Disorder dataset is a very commonly used dataset in literature relating the use of classification systems for Liver Disorder Diagnosis and it was used in this study to compare the classification performance of our proposed method with regard other studies. We obtained a classification accuracy of 94.29%, which is the highest one reached so far. This result is for Liver Disorder but it states that this method can be used confidently for other medical diseases diagnosis problems, too. 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Energy-Related CO2 Emissions Forecasting Using an Improved LSSVM Model Optimized by Whale Optimization Algorithm
Accurate and reliable forecasting on energy-related carbon dioxide (CO2) emissions is of great significance for climate policy decision making and energy planning. Due to the complicated nonlinear relationships of CO2 emissions with its driving forces, the accurate forecasting for CO2 emissions is a tedious work, which is an important issue worth studying. In this study, a novel CO2 emissions p...
متن کاملThe Application of Least Square Support Vector Machine as a Mathematical Algorithm for Diagnosing Drilling Effectivity in Shaly Formations
The problem of slow drilling in deep shale formations occurs worldwide causing significant expenses to the oil industry. Bit balling which is widely considered as the main cause of poor bit performance in shales, especially deep shales, is being drilled with water-based mud. Therefore, efforts have been made to develop a model to diagnose drilling effectivity. Hence, we arrived at graphical cor...
متن کاملModeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique
Understanding crack growth behavior in engineering components subjected to cyclic fatigue loadings is necessary for design and maintenance purpose. Fatigue crack growth (FCG) rate strongly depends on the applied loading characteristics in a nonlinear manner, and when the mechanical loadings combine with environmental attacks, this dependency will be more complicated. Since, the experimental inv...
متن کاملLeast Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 32 شماره
صفحات -
تاریخ انتشار 2007